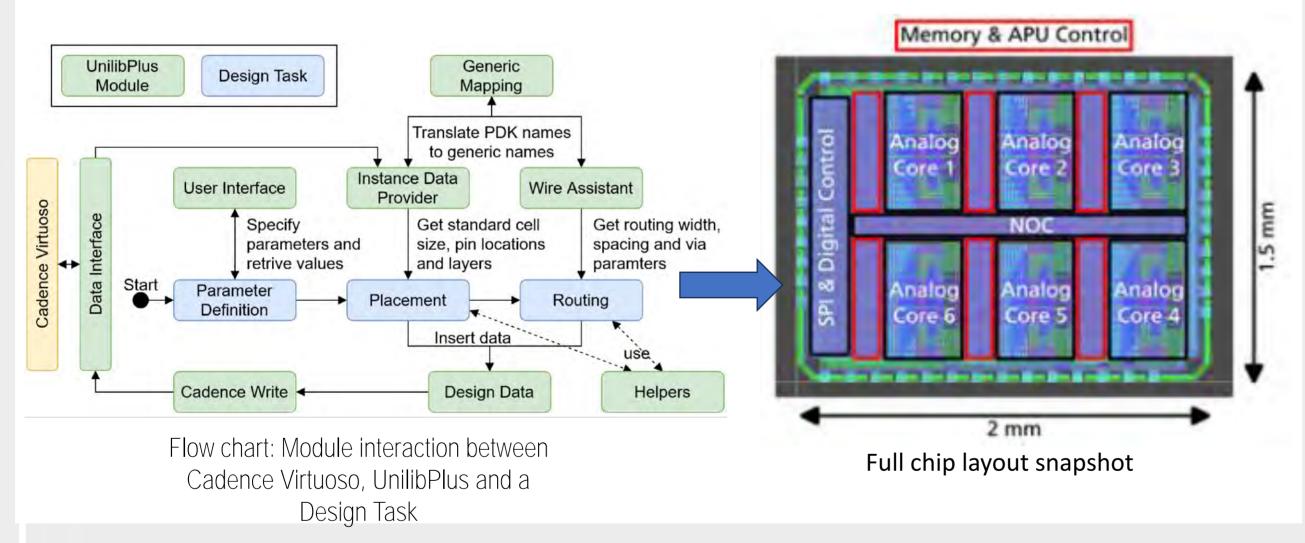


IC-Design Automation Ecosystem

Rapid Full Custom IC-Design for the **A**nalog **De**ep **L**earning **I**nference **A**ccelerator – ADeLIA – using UniLib Plus

1 Edge Al: Design Challenge

Situation:

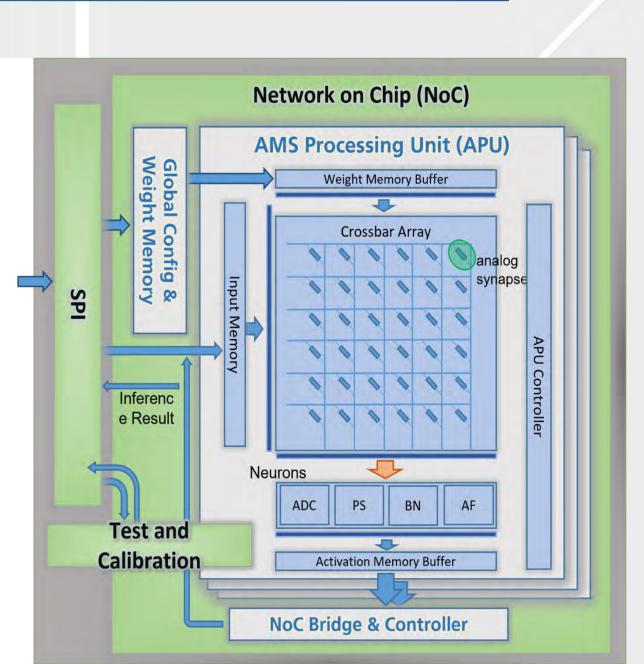

- Cloud Edge Computing and Edge AI are characterized by a large array of heterogeneous system requirements, driven by the diversity of applications and system components.
- Analog in-memory computing (IMC) offers a solution for applications demanding ultra-low power and latency with constrainted form factor (battery size)
 - Analog IMC extends battery lifetime and/or enables new use cases where micro-controller or DSPs cannot.

Challenge:

Flexible and scalable analog/mixed-signal circuit design for Edge
Al with reduced time to market

3 Solution: Automated Circuit Generation

- Design Automation for Analog Cells (IMC Crossbar Array and Neurons) not standardized
- UnilibPlus: custom developed automation framework compatible with Cadence Virtuoso analog design flow
- From custom design parameterization (e.g. No. of cores and neurons) to schematic and and layout in 10 mins design time
- Full custom verification: Automated verification flow and simulation reports, with pass/fail testing



5 Outlook

- Design automation
 - Chiplet version with interface for hetero-integration (AHSI)
 - Improved verification flow
 - Continuous Integration pipeline for code (RTL + UniLib + Templates)
- ADeLIA template evolution
 - support LSTM-type neural networks, e.g. RNN
 - support embedded non-volatile memory, e.g. MRAM
 - support image object recognition

2 Template: ADELIA Gen 2 Architecture

- scalable analog/mixed-signal processing cores (APUs) connected via cyclic bus fabric
- field programmable analog inmemory compute for fast and efficient multiply and accumulate (MAC)
- non-linear activation function:
- ADCs between APUs additional flexibility and efficiency
- low power serial interface
- user selectable weight and input precision: up to 8 bits for each

4 Results: VAD Example Use Case

KPI Name	Target	Measured
Accuracy	> 80 %	82.5%
Latency	< 3 ms	1.8 ms
Inference time	< 3 ms	1 ms
Power	< 1 mW	260 μW
Energy per Inference		0.2 μJ
Power Eff. 3b x 8b	1-5 TOPS/W	5.5 TOPS/W

- Proven Silicon with Demonstrator
- first time right
- Voice Activity Detection (VAD)Use Case
- Raspberry Pi host controller
- Detect Human Speech in Audio Signal (binary decision)
- VAD may be used as wake-up for "power-hungry" speech recognition algorithms
- Other neural networks in testing:
 - ECG monitoring
 - EMG monitoring
 - Keyword spotting
 - Gas sensor fingerprinting (smelling)

6 Impact

- 2 dissertations, 3 master thesis, 1 peer reviewed conference, 2 book chapters, 1 Patent
- Progress beyond SoA
 - Designed, verified and trained with full analog PVT variations
 - Execution of complete NNs
 - 200 nJ inference
- Reputable eNVM IC and IP provider interested in joint product
- Physical verification and lab evaluation with FMD equipment and EDA tool licenses